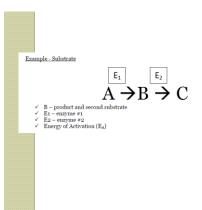
Enzymes Learning Outcome BII

Learning Outcome BII

• Analyse the roles of enzymes in biochemical reactions.

Student Achievement Indicators

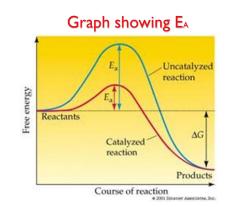
- Explain the following terms: metabolism, enzyme, substrate, coenzyme and activation energy
- Use graphs to identify the role of enzymes in lowering the activation energy of a biochemical reaction
- Explain models of enzymatic action (e.g., induced fit)
 Differentiate between the roles of enzymes and
- Differentiate between the roles of enzymes and coenzymes in biochemical reactions
- Identify the role of vitamins as coenzymes
- Apply knowledge of proteins to explain the effects on enzyme activity of pH, temperature, substrate concentration, enzyme concentration, competitive inhibitors, and non-competitive
- inhibitors including heavy metals
- Devise an experiment using the scientific
- Identify the thyroid as the source gland for thyroxin, and relate the function of thyroxin to metabolism


Metabolic Pathways

- A series of linked reactions made up of many steps.
- Begin with a particular reactant and end with the specific product
- One reaction leads to the next which leads to the next.
- Reactions have many specific steps with are organized in a highly structured manner.
- An enzyme is a protein that speeds up a chemical reaction
- Acts like a catalyst

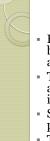
Metabolic Pathways

- Participates in the reaction but is not used up in the reaction.
- Enzymes do not determine whether a chemical reaction moves forward or not that is determined by the activation energy
- Reactants are also known as substrates.


Metabolic Pathways

 $E_{\rm A}$ – is the energy that must be added to cause the molecules to react with one another

- The E_A must be achieved in order for a reaction to occur
- E_A is the minimum energy required
- Enzymes lower the E_A, which means a lower amount of energy is required in order for activation to occur.
- Without enzymes reaction rates would be very slow, therefore enzymes lower the activation energy and increase the rate of the reaction.


 $S + E \rightarrow ES \rightarrow E + P$

S – substrate E – enzyme ES – Enzyme –Substrate complex P - product

Metabolic Pathways

- The active site forms a complex with the substrate and the enzyme and substrate fit together.
- Active site undergoes a small conformational change in order to accommodate the substrate known as induced-fit model.
- Change in shape facilitates the reaction.
- After the reaction occurs a product is released and the active site returns to its original state.
- Only a small amount of enzyme is needed because it is not used up in the reaction.
- Some enzymes do more than just bind to the active site, they participate in the reaction.

Metabolic Pathways

- Example –trypsin digests protein by breaking peptide bonds between amino acids.
- The active site for trypsin contains three amino acids with R-groups that actually interact with parts of the peptide bond
- Sometimes a particular reactant(s) may produce more than one type of product.
- The presence or absence of an enzyme determines which reaction takes place.

Metabolic Pathways

- So if the substrate can react to form more than one product, than the enzyme that is present and active determines which product is produced.
- Every reaction in a cell requires that its specific enzyme can be present, because enzymes only compete with their substrate.
- They are often named after their substrate. lipid – lipase
- Example:
- urea urease ribonucleic acid - ribonuclease

Factors Affecting Reaction Rates Enzymatic reactions may proceed at different rates. Need enough substrate to fill most

Need enough substrate to fill most active sites.

Factors Affecting Reaction Rates

Substrate Concentration

- ✓ Enzymatic activity increase as substrate concentration increases because there are more collisions between substrate molecules and the enzymes.
- ✓ As more substrate fills active sites, more products result.
- ✓ When an enzymes active site is filled continuously with substrate the enzymes rate of activity cannot increase anymore
- ✓ This means the maximum rate of the reaction has been achieved.

Factors Affecting Reaction Rates

Temperature and pH

- As temperature increase enzyme activity increase allowing more collisions between enzymes and substrates.
- However if the temperature is too high the enzyme will denature (change shape).
- If an enzyme changes shape it can no longer bind with an active site.
- Each enzyme has a preferred pH, for optimal reaction rate
- A change in pH can alter the ionization of R-groups and disrupt normal interaction
 Extreme pH can dition and course proteins to
- Extreme pH conditions can cause proteins to denature.
- $\checkmark\,$ When an enzymes shape is altered it cannot bind to the substrate

Factors Affecting Reaction Rates

Enzyme Activation

- ✓ Genes can increase or decrease the concentration of an enzyme present
- ✓ Enzyme are activated in many different ways
- ✓ Example addition or removal of a phosphate group to a molecule
- ✓ *Example* removing part of a protein or cofactor

Factors Affecting Reaction Rates

Enzyme Inhibition

- Occurs when substrate is unable to bind to active sites on an enzyme
- Regulated by feedback inhibition
- $\checkmark\,$ Plenty of products, all binding to the active site on the enzyme
- As a product is used up inhibition is reduced and more substrate can bind to the enzymes active sites.
- Most metabolic pathways are regulated this way
- Also known as competitive inhibition
- Non-competitive inhibition is when a product bind to another sites besides the active site of the enzyme.
- This causes a conformational change of the active site.
 The active site is where the substrate is trying to bind so the substrate cannot bind and no more products can be made.

Factors Affecting Reaction Rates

Enzyme Cofactors

- ✓ Most enzymes require an inorganic or organic nonprotein helper to function normally.
- Example of ions that act as cofactors are Cu, Zn or Fe (inorganic cofactors)
 - Organic non-protein molecules are called coenzymes.
- Coenzymes assist enzymes and may even accept or contribute atoms to the reaction.
 Viteming one of the commence of a communication.
- Vitamins are often components of coenzymes
 Vitamins are small organic molecules that are required in trace amounts in our diet for synthesis of coenzymes
- ✓ Vitamins become a part of a coenzyme's molecular structure.
- Vitamin deficiencies result when there is a lack of coenzyme which cause a decrease in enzymatic reactions.

Factors Affecting Reaction Rates

Examples of vitamin deficiency symptoms

- Niacin deficiency cause a skin disease known as pellagra
- Riboflavin deficiency causes cracks in the corner of the mouth.