Respiratory System Learning Outcome C8, C9 & C10

Learning Outcome C8

 Analyse the functional interrelationships of the structures of the respiratory system

Student Achievement Indicators

Students who have fully met this learning outcome are able to: · Identify and give functions for each of the following:

- nasal cavity
- pharynx
- larynx
- trachea
- bronchi
- bronchioles
- alveoli diaphragm and ribs
- pleural membranes
- thoracic cavity
- Explain the roles of cilia and mucus in the respiratory tract Explain the relationship between the structure and function of alveoli

Learning Outcome C9

 Analyse the functional interrelationships of the structures of the respiratory system

Student Achievement Indicators

Students who have fully met this learning outcome are able to: Describe the interactions of the following structures in the breathing process:

- respiratory centre in the medulla oblongata
- lungs
- pleural membranes diaphragm
- intercostal (rib) muscles
- stretch receptors
- Compare the processes of inhalation and exhalation
- Explain the roles of carbon dioxide and hydrogen ions in stimulating the respiratory centre in the medulla oblongata Explain the roles of oxygen, carbon dioxide , and hydrogen ions in stimulating carotid and aortic bodies

Learning Outcome CI0

· Analyse internal and external respiration

Student Achievement Indicators

Students who have fully met this learning outcome are able to:

- Describe the exchange of carbon dioxide and oxygen during internal and external respiration, including:
 - ✓ location of exchange
 - ✓ conditions that favour exchange (e.g., pH, temperature)
- Explain the roles of oxyhemoglobin, carbaminohemoglobin, reduced hemoglobin, bicarbonate ions, and carbonic anhydrase in the transport of carbon dioxide and oxygen in the blood
- Write the chemical equations for internal and external respiration

The Respiratory Tract

Primary Function: allows oxygen from air to enter the blood and CO_2 from the blood to exit into the air

- 1. Inspiration (AKA inhalation)
 - ✓ Breathing in, air is conducted towards the lungs by a series of cavities, tubes and openings.
- 2. Expiration (AKA exhalation)
 - ✓ Breathing out, air is conducted away from the lungs.

The Respiratory Tract

3. Ventilation (AKA breathing)

- ✓ Includes inspiration and expiration
- The respiratory and cardiovascular system work together to allow:
 - ✓ External Respiration: exchange of gases (CO₂ and O₂) between air and blood
 - ✓ Transport of gases to and from the lungs and tissues
 - ✓ Internal Respiration: exchange of gases between blood and tissue fluid.

The Respiratory Tract

- Air is cleansed by coarse hairs inside the nostrils and by cilia and mucus within the nasal cavity.
- Air is warmed by heat, which is given off by the blood vessels lying close to the surface of the lining of the airways.
- The air is moistened by the wet surfaces of these passages.
- As air moves out during expiration it cools and loses moisture.
- As the air cools it deposits its moisture on the lining of the trachea and nose.
- This may cause the nose to drip as a result of condensation.
- The air still retains so much moisture that on a cold day it condenses and forms a small cloud upon expiration.

Upper Respiratory Tract

Has three parts:

1. Nose (AKA nasal cavities)

- Only external portion of the respiratory tract
- ✓ Air enters nose through external openings; the nostrils
- The nose contains two nasal cavities; which are separated by a septum composed of cartilage and bone.
- Mucous membranes line the nasal cavities, these membranes warm/moisten air.
- Odor receptors are located on cilia that are high in the recesses of the nasal cavities.
- ✓ The tear (lacrimal) glands drain into the nasal cavity, this is the reason why you receive a runny nose when you cry.
- The nasal cavities are located near the sinuses, which are air-filled spaces that help reduce the weight of the skull
- $\checkmark~$ The hard and soft palates separate the nasal cavities from the mouth.

Upper Respiratory Tract

2. Pharynx

- ✓ Connects the nasal and oral cavities to the larynx
- ✓ Composed of three parts:
- a. Nasopharynx: where the nasal cavities open behind the soft palate
- b. Orthopharynx: where the mouth opens into the pharynx
- c. Laryngopharynx: opens into the larynx.

Upper Respiratory Tract

 Tonsils are located at the junction between the mouth and pharynx.

- Tonsils are made up of lymphatic tissue containing lymphocytes, that function as part of the immune system that protects against the invasion of inhaled bacteria and viruses.
- Both the larynx and trachea are normally open; allowing air to pass but the esophagus is normally closed until a person swallow.

Upper Respiratory Tract

- *Larynx* Cartilaginous structure between pharynx and trachea
- Known as a voice box, because it houses the vocal cords
- The vocal cords are mucosal folds supported by elastic ligaments.
- ✓ The slit between the vocal cords is an opening called the glottis.
- When air is expelled past the vocal cords through the glottis the vocal cords vibrate producing sounds.
- Pitch of the voice is regulated by changing the tension of the vocal cords.
- The greater the tension, the narrower the glottis which results in a higher pitch
- \sim Loudness/intensity of voice depends on the amplitude (size) of the vibrations.
- When food is swallowed, the larynx moves upward against the epiglottis, which is a flap of tissue that prevents food from passing into the larynx.

Lower Respiratory Tract

Has three parts:

- 1. Trachea (AKA windpipe)
 - Connects larynx to primary bronchi
 - ✓ Lies above the esophagus and is help open by C-shaped cartilaginous rings.
 - ✓ The open part of the C-shaped rings face the esophagus, this allows the esophagus to expand during swallowing.
 - ✓ Epithelial cells line the trachea; which have projected cilia.
 - ✓ The cilia keep the lungs clean by sweeping mucus and debris towards the pharynx
 - $\checkmark\,$ Smoking destroys these cilia, and toxins can build up in the lungs.

Lower Respiratory Tract

2. The Bronichial Tree

- The trachea divides into left and right primary bronchi
- Each bronchi leads to a lung
- Bronchi resemble the trachea in terms of structure but as the bronchi divide and subdivide their walls become thinner and the small rings of cartilage are no longer present.
- ✓ Each bronchiole leads to an air sac known as an alveoli

Lower Respiratory Tract

3. Lungs

- ✓ A pair of cone-shaped organs that occupy the thoracic cavity
- ✓ The right lung has three lobes and the left lung has two lobes, this allows room for the heart.
- ✓ Loves are divided into lobules, and each lobule has a bronchiole with many alveoli.
- The apex of the lungs is narrow, while the base is broad and curves to fit the dome-shaped diaphragm.
- The diaphragm is a muscle that separates the thoracic and abdominal cavities.

Inspiration & Expiration

- There is a continuous flow of air form the pharynx to the alveolus.
- The lungs lie within the sealed off thoracic cavity.
- The ribs attach to the vertebral column and to the sternum, which forms the top and the sides of the thoracic cavity.
- The diaphragm and connective tissue form the floor of the thoracic cavity.
- The lungs adhere to the thoracic wall by way of the pleura.
- Normally any space between the two pleurae is minimal due to the surface tension of the fluid between them.

Inspiration

- Active phase of respiration, diaphragm and external intercostal muscles contract
- Diaphragm lower and contracts, which the intercostal muscles move the ribcage upward and outward
- Following contraction the volume of the thoracic cavity is larger.
- As the thoracic cavity increase the lungs expand
- This causes the air pressure within the alveoli to decrease, creating a partial vacuum.
- Alveolar pressure is now less than atmospheric pressure outside the lungs, so air will naturally flow from outside the body into the alveoli.
- Air moves lungs because the lungs are already open, air does not force the lungs open.
- The creation of this partial vacuum in the alveoli causes air to be brought into the lungs.

Expiration

- Passive part of respiration
- Elastic properties of thoracic walls and lungs cause them to recoil
- Lungs recoil because the surface tension of the fluid lining the alveoli tend to close them.
- During expiration, the abdominal organs press up against the diaphragm and the rib cage moves in and downward.
- When breathing is deeper, a more rapid expiration may occur.
- Forces the ribcage to move downward and inward
- Also when the abdominal wall muscles contract they push on the viscera which pushes on the diaphragm.
- This causes increased pressure in the thoracic cavity, which expels air.

Control of Ventilation

- The respiratory centre is located in the medulla oblongata and it controls the rhythm of ventilation.
- Causes inspiration to occur by sending impulses to the diaphragm by way of the phrenic nerve
- When the respiratory center stops sending neuronal signals to the diaphragm and the rib cage, the diaphragm relaxes and resumes its dome-shape.
- Expiration can now occur (passive).
- Respiratory center controls rate and depth of breathing but its activity can also be influenced by nervous input and chemical input.
- Following forced inhalation, stretch receptors in the alveolar walls initiate inhibitory nerve impulses that travel via the vagas nerve from the inflated lungs to the respiratory center.
- This stops the respiratory center from sending out nerve impulses.

Chemical Input

- The respiratory centre is directly sensitive to the level of $\rm CO_2$ and H^+ in the blood.
- When the levels rise the respiratory center increase the rate and depth of breathing.
- The respiratory center is not affected directly by low O_2 level.
- Chemoreceptors in the carotid bodies which are located in the carotid arteries located in the aorta are sensitive to level of O_2 in the blood.
- When the concentration of oxygen decreases, these chemoreceptors communicate with the respiratory center and the rate and depth of breathing increases.

Mechanisms of Breathing

 Breathing can be measured by a spirometer, it records the volume of air exchanged during normal and deep breathing.

Respiratory Volumes

- Normally when we are relaxed only a small amount of air move in and out with each breath This small amount of air is known as tidal volume (approx.
- 500 mL).
- It is possible to increase the amount of air you inhale, and therefore the amount of exhaled by breathing deeply.
- The maximum amount of air that can be moved in plus the maximum amount of air that can be moved out in a single breath is known as vital capacity.
- To increase vital capacity, you much increase the amount of air you breathe in, as well as the amount of air you breathe out.
- You can increase inspiration by expanding lungs and lowering your diaphragm.
- Forced inspiration increases volume of air beyond tidal volume by about 2900 mL, and this is known as the inspiratory reserve volume.
- You can increase the amount of air expired by contracting abdominal muscles and the inner intercostal muscles.

Respiratory Volumes

- This is the expiratory reserve volume (approx. 1400 mL). .
- In average adults only 70% of tidal volume actually reaches the alveoli and 30% remains in the airway.
- The airways are not used for gas exchange, therefore this is known as dead-space air.
- If you breath deeply and slowly a larger portion of inhaled air can reach the lungs. Residual Volume: is the volume of air that remains in the lungs even after exhalation. This air is not useful for gas exchange because it is depleted of O_2 .